

The List of English Taught Courses Preliminary Available for Erasmus+ Incoming Students

at the Faculty of Mechanical Engineering 2024/2025

Students may combine courses from different levels of study provided they meet the prerequisites.

WINTER SEMESTER (WS = September – January)

Theory of Heat				
Treatment	Doc. Ing. Adam Hotař,	WS / 5 ECTS	Master level	
Dept.: KMT	Ph.D.	W3/3EC13	Master level	
Course code: TTZ*M				
Annotation				
The aim of the course is to a	acquire and extend the know	wledge of physical and met	allurgical basics of heat	
treatment, especially steels, cast iron and non-ferrous alloys. Students will deepen their knowledge of				
diffusion processes in heat treatment and get an overview of various types of heat treatment, such as				
annealing, quenching, tempering, hardening, aging etc. In addition, the chemical-thermal treatment,				
thermomechanical treatment and surface heat treatment will be also explain.				
Prerequisites: Basic knowledge of material science (crystal structure of metals, defects of crystal lattices,				
properties of materials and their testing, equilibrium binary diagrams, Fe-C diagrams, basics of phase				
transformations of steels in solid state, basics of thermal and chemical-thermal processing)				

Design Materials	Doc.Ing. Adam Hotař,			
Dept.: KMT	Ph.D. /prof. Ing. Petr	WS / 3 ECTS	Master level	
Course code: KM*M	Louda, CSc.			
Annotation				
The aim of the course is to a	The aim of the course is to acquire and extend the knowledge of physical and metallurgical basics of heat			
treatment, especially steels, cast iron and non-ferrous alloys. Students will deepen their knowledge of				
diffusion processes in heat treatment and get an overview of various types of heat treatment, such as				
annealing, quenching, tempering, hardening, aging etc. In addition, the chemical-thermal treatment,				
thermomechanical treatment and surface heat treatment will be also explain.				
Prerequisites: basic knowledge of materials engineering				

Applied Cybernetics Dept.: KSA Course code: AK-B Minimum 2 students	Ing. Radek Votrubec, Ph.D.	WS / 4 ECTS	Bachelor level	
Annotation				
Dynamic systems, mathematical model, linearization, identification of static and dynamic characteristics, numerical simulation. Laplace transformation, frequency analyses, stability verification, feedback control, PID controller, methods of optimisation of PID parameters, numerical control system, simulation in Matlab-Simulink environment, instrumentation and control by means of LabVIEW.				
Prerequisites: none				

			1	
Additive Technology Dept.: KSA Course code: ADIT Minimum 5 students Maximum 10 students	Ing. Petr Keller, Ph.D.	WS / 5 ECTS	Bachelor level Master level	
Annotation				
Introduction to additive technologies, comparison with other manufacturing technologies. History and development of additive technologies and methods of Rapid Prototyping. General principles of 3D objects printing, requirements for input data and their quality. Classification of additive technologies, possibilities and differences of individual methods, possibilities of usage. Future of additive technologies, hybrid technology.				
Prerequisites: CAD I, II				

Production Machines I / Dept.: KSA Course code: VS1	Ing. Petr Zeleny, Ph.D.	WS / 4 ECTS	Master level	
Annotation				
Description of machine tools, their characteristics and specific feasibility of machines. Precision, stiffness.				
Forces, Power transmission. Design for rigidity and performance, requirements. Design principles and				
Characteristics of various parts-e.g. spindles, feed mechanisms, guides, drives, clamping devices, frames,				
manipulation, control, automation.				
Prerequisites: Machine parts, Elasticity and Stresses				

3D Digitization and Reverse Engineering Dept.: KSA Course code: 3DR*M Minimum 5 students Maximum 10 students (all students in the subject)	doc. Ing. Radomir Mendricky, Ph.D.	WS / 4 ECTS	Master level	
Annotation				
The aim of the subject is to acquaint students with the modern methods of 3D measurement and optical digitization in engineering and its use in technical practice. Attention is paid to the processing of measured data, dimensional and shape inspection and methods of reverse engineering. Prerequisites: n/a				

Operation Analysis Dept.: KSA Course code: OA*M Minimum 5 students Maximum 12 students	lng. Frantisek Koblasa, Ph.D.	WS / 4 ECTS	Master level	
Annotation				
The course deals with methods of operational analysis e.g. linear programming, network analysis, game				
theory, queuing theory. Furthermore, methods of network analysis, CPM & PERT method, the method of dynamic programming, game theory and optimal decision making are explained on real world problems.				
Prerequisites: none	• 1		•	

Artificial Intelligence Dept.: KSA Course code: UI*M	^{sek,} WS, SS / 5 ECTS	Master level
--	---------------------------------	--------------

Annotation

Introduction into artificial intelligence, the central problems of artificial intelligence. Traditional computational models, state space, fitness function. Recognition and synthesis of audio and video, signal processing, image segmentation. Biologically inspired algorithms, neural networks, genetic algorithms, cellular automaton and other applications of artificial neural networks. **Prerequisites**: none

Digital Factory				
Dept.: KSA				
Course code: DIP*M				
Substituting old course	Ing. Frantisek Koblasa,			
Simulation of manufacturing systems	Ph.D.	WS / 5 ECTS	Master level	
Minimum 5 students				
Maximum 12 students				
(all students in the subject)				
Annotation				
The course introduces stud	lents to the basics of discr	ete event simulation. Introd	luces them to issues in	
the field of Digital Factory (I	DF), Digital Twin. Simulation	tools in the field of queuing	y theory, material flows,	
logistics and ergonomics a	are presented. The metho	dological procedure of sim	nulation study and the	
possibility of using optimiza	ation methods with the sup	port of the systematic des	ign of experiments are	
explained. Subsequent interpretation of simulation outputs is discussed. The condition is the independent				
elaboration of the project work in the selected simulation system. Exercises are focused on the practical				
application of selected methods in simulation studies.				
Prerequisites: none				

Fluid Mechanics Dept.: KEZ Course code: MT Minimum 3 students	lng. David Šimurda, Ph.D.	WS / 5 ECTS	Bachelor level	
Annotation				
The basic properties of liquids, the hydrostatics, the relative equilibrium, the hydrodynamics of viscous and inviscid incompressible fluid, the laminar and turbulent flow, the hydraulic losses, the devices to transport and compression of fluid.				
Prerequisites: Mathematics, Physics				

Experimental Methods in Fluid Mechanics and Thermodynamics Dept.: KEZ Course code: EXMT Minimum 3 students	Ing. Jan Novosad, Ph.D.	WS / 4 ECTS	Master level		
Annotation: The basic view into experimental methods – theoretical base + practical measurement					
Prerequisites: in process					

Annotation

Lay - out and calculation of pipe systems for transportation of liquids, gases and vapours. Operation characteristics and properties of some groups of control elements. **Prerequisites**: in process

Heat and Mass Transfer Dept.: KEZ Course code: PTH Minimum 3 students	Ing. Jan Novosad, Ph.D.	WS / 5 ECTS	Master level	
Annotation				
The course is focused on basic mechanisms of transport phenomena. The main topics are: Balance equations, Euler and Lagrangian description, the basic mechanisms of heat transfer, steady and unsteady heat conduction, and convective heat transfer, heat transfer with phase change, radiation heat transfer, and radiation coefficient calculation methods. Molecular diffusion mass transfer, convective mass transfer, simultaneous heat and mass transfer, Reynolds analogy, Chilton-Colburn analogy.				
Prerequisites: Thermodynamics, Fluid Mechanics				

Technical Building Equipment Dept.: KEZ Course code: TZAB Minimum 3 students	doc. Ing. Milos Müller, Ph.D.	WS / 5 ECTS	Master level
Annotation			
The lectures introduce stud systems. It includes the de properties of constructions, conditioning air treatment, the air conditioning system and reheat systems. The calculation of base types of into the design of the warn Prerequisites : Thermodyna	efinition of the parameters , the calculation of the build the design of the air distrik s, chillers and heat sources lectures introduce student heating systems and its co air heating.	defining the buildings mid lings heat load, fundament oution systems, component s for the air conditioning, a s also into the fundament	croclimate, the thermal al calculations of the air s of the ventilation and ir conditioning systems tals of the design and

Mechanics II (Kinematics) Dept.: KMP Course code: KIN	prof. Ing. Iva Petrikova, Ph.D.	WS / 5 ECTS	Bachelor level	
Annotation				
Kinematics of particle translation, rotation, general plane motion spherical motion and general spatial motion of a rigid body, simultaneous motions. Kinematical geometry of general plane motion of rigid body. Kinematics of mechanisms, analytical and graphical analysis. Mechanisms with constant gear train. Principle of virtual power.				
Prerequisites: Basic knowle	Prerequisites: Basic knowledge of the subjects STA and M1A.			

Mechanical Vibration Dept.: KMP Course code: KMS*M	prof. Ing. Iva Petrikova, Ph.D.	WS / 5 ECTS	Master level Bachelor level
Annotation			

The course presents the fundamentals of vibrations of mechanical systems. Single degree of freedom system. Excitation Forces. Frequency response on a periodic excitation. Discrete systems with multidegree of freedom. Dynamic absorber. Vibrations of nonlinear systems. Vibrations of linear continuous system. Finite elements method for vibration problems. Eigenvalue problem and modal analysis. Fundamentals of rotor dynamics. Machines with impact and periodic forces. **Prerequisites**: Basic knowledge of the subjects PP2 and DYN.

 Mechanics of Composite and Advanced Materials Dept.: KMP
 doc. Ing. Tran Huu Nam, Ph.D.
 WS / 6 ECTS
 Master level Bachelor level

 Course code: MKPM
 Ph.D.
 WS / 6 ECTS
 Master level Bachelor level

 Annotation
 Fundamentals of anisotropic elasticity, composite materials and their mechanics properties. Stress analysis of laminate structures (beams, plates, shells), strength of composites, mechanical testing.

 Prerequisites: Basic knowledge of the subject "Strength of materials.".

Metrology Dept.: KOM Course code: MET Minimum 2 students	doc. Ing. Stepanka Dvorackova, Ph.D. Ing. Artur Knap	WS / 5 ECTS	Master level	
Annotation				
The aim of the course is to get acquainted with metrology at national and international level. The course focuses on legislative and technical documents in metrology, corporate metrology, calibration and verification of gauges, measurement uncertainty and design and evaluation of the measurement experiment.				
Prerequisites: none	Prerequisites: none			

Robots and Manipulators Dept.: KSR Course code: ROBM	doc. Ing. Marcel Horak, Ph.D.	WS / 5 ECTS	Master level	
Annotation				
The subject presents overv			· ·	
robot mechanics and descr				
basic design of motional a potential.	xis, robot control and prog	ramming. It also character	izes robot's application	
Prerequisites: none				
Electro Pneumatic				
Actuators	doc. Ing. Marcel Horak,	WS / 4 ECTS	Master level	
Dept.: KSR	Ph.D.	W374 L013		
Course code: EP				
Annotation				
Systems analysis of pneumatic circuits, determination of pneumatic actuators, valves, shock absorbers				
and accessories, vacuum circuits, step diagrams, sequential control. Synthesis of electro pneumatic				
control with using of PLC. Basic types programming of programmable logic controllers (PLC). Solving of				
boundary and safety conditions and their practical verification.				
Prerequisites: none	Prerequisites: none			

Statistics for Engineering Dept.: KVM Course code: IS	Ing. Katerina Andrlova	WS / 4 ECTS	Bachelor level Master level
---	------------------------	-------------	--------------------------------

Annotation

Basic concepts of the number of probabilities, numerical characteristics of random variables, description of properties and use of discrete and continuous random variables, parameter estimations, methods of analysis of experimental data, testing of statistical hypotheses, regression analysis. Basic concepts of product reliability theory, failures and their classification, reliability test and evaluation,

basic concepts of product reliability theory, failines and their classification, reliability test and evaluation, bath curve, system reliability, statistical scrutineering, operational characteristics of acceptance plans, calculation of parameters of operational characteristics.

Prerequisites: Subjects in basic studies - mathematics.

Design Project II Dept.: KVM Course code: KPII	Ing. Robert Vozenilek, Ph.D.	WS / 4 ECTS	Master level Bachelor level	
Annotation				
The solution of individual allocated work (namely designing character). The work opens up on the results of the term work from the subject "Project I". The work contains the basic calculation solution (thermal and strength problems). The result of this work is defended at the end of term before students' group and head of subject.				
Prerequisites: none				

Ing. Pavel Brabec, Ph.D. Ing. Robert Vozenilek, Ph.D.	WS / 4 ECTS	Master level Bachelor level		
Annotation				
Modelling of linear and nonlinear dynamic engineering systems. Dimensional analysis and modelling, with				
application to flow problems and hydrostatic mechanisms, pneumatic mechanisms, thermal systems, and				
improving the dynamic performance characteristics of vehicle, modelling of combustion engines.				
Prerequisites: Theory of vehicles, Driving Units I, Driving Units II, Vehicles I, KMS, EPS				
	Ing. Robert Vozenilek, Ph.D. inear dynamic engineering s and hydrostatic mechanis ormance characteristics of	Ing. Robert Vozenilek, Ph.D. WS / 4 ECTS inear dynamic engineering systems. Dimensional analy s and hydrostatic mechanisms, pneumatic mechanisms ormance characteristics of vehicle, modelling of combi		

Driving Units I Dept.: KVM Course code: POJ1	Ing. Pavel Brabec, Ph.D.	WS / 4 ECTS	Master level Bachelor level
Annotation			
Theory, processesThe core of the subject is the acquisition of basic theoretical knowledge from the field of thermo-chemistry and thermo-mechanics in terms of the working process of piston combustion engines, as well as experience with the application of computations and the experimental verification of their principal parameters. The aim is to familiarize students with the operational-emission properties and characteristics of vehicle engines (piston combustion engines and partly electric engines and gas turbines).			
Prerequisites : Subjects in I machine parts).	pasic studies (mathematics,	chemistry, thermodynamic	s, kinematics and

Driving Units III Dept.: KVM Course code: POJ3	Ing. Aleš Dittrich	WS / 4 ECTS	Master level Bachelor level
Annotation			
The course focuses on: Fuel components of diesel engines, gasoline engines. Piston combustion engine control systems. Blowers and turbochargers. Electrical accessories for motors (battery, alternator, starter, ignition). PSM cooling systems. Exhaust silencers. Air, fuel and engine oil filtration equipment. Catalytic reactors and particle filters.			

Prerequisites: Subjects in basic studies (mathematics, chemistry, thermodynamics, kinematics and machine parts). Driving Units I.

Mechanical Engineering Dept.: KVM Course code: STR	doc. Dr. Ing. Elias Tomeh	WS / 2 ECTS	Bachelor level
Annotation			
The subject shows the mechanical engineering as the field of the technical science. The attention is focused to the history of technical discoveries and knowledges of the natural laws. The subject occupies with the technology branches and also with the science of machines. The subject shows the faculty of mechanical engineering as the education and science-research institution.			
Prerequisites: The students be carried out in blocks. Stu areas. Students will be given in the form of submission of during the class or the teac	dents will be assigned mate n independent assignments f an independent term pap	rial for independent study a throughout the semester. ber and a credit paper. Con	according to the subject The end of the course is isultations are available

Machine Parts and Mechanisms II Dept.: KST Course code: CSII	prof. Ing. Lubomir Pesik, CSc. Ing. Radka Jirova, Ph.D.	WS / 5 ECTS	Bachelor level			
Annotation						
Differentials and planetary	spur and bevel gear trains.	Helical and worm gears.	Compression, extension			
and torsion springs, metallic	c or non-metallic. Antivibrat	ion and shock mounts. Cou	plings for shafts, flange			
and jaw type, couplings for	and jaw type, couplings for angular and lateral misalignment, universal joints, friction and flexible clutches.					
Design of pins and shafts, c	critical speed of shafts. Spee	cial gear trains.				
Prerequisites: Technical Mechanics, Elasticity and Strength (Entrance test) and Technical Drawing.						
Passing an entrance test on the basics of mechanics (statics, kinematics, dynamics) and elasticity and						
strength (critical section of the part, stress types, limit stressis and limit deformations).						

Design Exercise Dept.: KST Course code: KC	prof. Ing. Ladislav Sevcik, CSc.	WS / 3 ECTS	Bachelor level			
Annotation	Annotation					
Engineering design of the actuator consisting of a two-stage belt drive or chain drive, multi-stage gearbox						
with helical and bevel gears to shift, respectively with worm gearbox and clutch.						
Prerequisites: Completion of the course KST/CSI						

CA Technology Dept.: KST Course code: CAT*M	prof. Ing. Ladislav Sevcik, CSc.	WS / 4 ECTS	Master level		
Annotation					
Subject include encompassments of CAD and FEM technologies, especially CAD technology of surface design, welded design and sheet metal, thin plastic parts, cast parts and changes of import geometry, mold CAD technology and design of pipe systems.					
Prerequisites: Students should be able to handle CAD and FEM technology, especially technology creation welded assemblies, sheet metal, sheet and free-surface modelling. They should be able technologies making thin plastic parts, casting technology development and technology repair of imported geometry, technology and forms of virtual machining module, piping systems.					

Innovation Engineering Dept.: KST Course code: INI*M	doc. Ing. Petr Lepsik, Ph.D.	WS / 6 ECTS	Master level		
Annotation					
The subject is focused on theory and questions connected with innovation cycle. The concept of simultaneous engineering will be presented and explained. Students will learn the tools of simultaneous (concurrent) engineering for reduction of time for design and manufacturing of new products. Seminars are oriented on training of essential methods during team-project centered on complex innovation of simple product.					
innovation cycle, students s production. They should m	Prerequisites: Students, in this course should know the theory and the problems associated with the innovation cycle, students should learn to work with tools to reduce time to introduce a new product into production. They should master the basic methods of training within the innovation team project team focused on complex product innovation from a simple design, the design process.				

Principles of Product Design Dept.: KST	prof. Ing. Ladislav Sevcik, CSc.	WS / 5 ECTS	Master level		
Course code: PNV*M					
Annotation					
The course is focused to autonomous innovation design working. The subject includes the basic principles and methods of design, innovation methods DFA, DFD, DFM, DFMA. In subjects are used experiences from design and assemble of gearboxes, forget and cast pieces, plastics parts of care. Product evaluation of parts and assemblies is made from point of view of function, design, assembly, disassembly and manufacturing.					
Prerequisites : Students should develop independent innovative work in product design. The course includes principles and methods of design work, innovative methods of basic DFA, DFD, DFM, DFMA Based on experience with the development of gear boxes, forgings and plastic car parts. It also includes elements of safety features. It shows the possibility of product reviews and reports with regard to functionality, appearance, its assembly, disassembly, and manufacturing. It is also familiar with the economic views of the individual machine units.					

Technical Communication Dept.: KST Course code: TEK*M	doc. Ing. Vitezslav Fliegel, CSc. Ing. Pavel Srb, Ph.D.	WS / 3 ECTS	Master level		
Annotation			of information in alcolog		
Technical communication as a topic of the branch administration and management of information includes processes creation, maintenance, spread, storage and ultimate disposition of sort out dates, information of proposal, project, product, trade, and legislation. It provides the critical links among people, ideas, and ICT that are necessary for success of the PLM. Technical communication provides an overview of the following major processes: Engineering Data management, Prodat Data Management, Product Lifecycle Management, Project Management, Enterprise Content Management & Enterprise Resource Planning, CAD Management, Content Management.					
Prerequisites: Students sho in the field. Should use comm management. Technical com creating and managing c management, management of management.	nunications technologies, w nmunication gives an overv locuments, systems man	hich are necessary for succ iew of the following major agement products, syste	essful product lifecycle processes: systems for ms, product lifecycle		

Calculations of Polymer and Composite Parts Dept.: KST Course code: VPKD	doc. Ing. Michal Petrů, Ph.D.	WS / 5 ECTS	Master level	
Annotation				

Experimental Methods Dept.: KTS Course code: EXPM Minimum 2 students	doc. Ing. Martin Bilek, Ph.D. Ing. Jiri Komarek, Ph.D. doc. Ing. Petra Dančová, Ph.D. Ing. Aleš Dittrich, Ph.D. doc. Ing. Vlastimil Hotar, Ph.D. doc. Ing. Radomír Mendřický, Ph.D.	WS / 4 ECTS	Master level
Annotation			
Principles of measuring nor electrical quantities senso measurement, measuremen principles of non-contact vehicles; evaluation of its Measurement of temperal measurement, heat transfer Measurement of pressure anemometer, hot-wire anem Prerequisites : not specified	rs: Sensors of kinematic of nt microphones, thermome 3D measurements. Experim operational parameters, pa ture, contact and noncon coefficient measurements, and rapid changes in pre- nometer, CTA, the basics of	variables, force and press eters, etc. Non-Contact of nents aimed at internal co rticularly power, noise and tact methods, surface a the measurement of rapid o ssure. Measurement of flu	sure sensors, vibration oject digitalization and ombustion engines and d emission parameters. nd fluids temperature changes in temperature.

Numerical Simulation in Machine Design Dept.: KTS Course code: NSM	Ing. Petr Zabka, Ph.D. Ing. Jan Kracik, Ph.D. prof. Ing. Jaroslav Beran, CSc.	WS / 4 ECTS	Master level
Annotation			
volume method in the design to solve advanced linear and and mesh, including the con defining boundary conditio results. Students are expect	gain experience with the app of equipment and machines. d nonlinear engineering proble nection to CAD software; usir ns; ensuring the solution's a ted to be already familiar with entals, Modelling and simulation	Students will learn to use ems. They will also learn h ng the principles of effec ccuracy; evaluating and FEM fundamentals.	FEM and CFD software now to create geometry tive modelling; properly

			* 1	
Modelling of Mechanical	doc. Ing. Martin Bilek,			
Systems	Ph.D.			
Dept.: KTS	doc. Ing. Jan Valtera,	WS / 5 ECTS	Master level	
Course code: MMSV	Ph.D.			
Minimum 2 students	Ing. Petr Zabka, Ph.D.			
Annotation				
Static, kinematic and dynamic analysis and synthesis of mechanical systems. Simulation of dynamic systems in Matlab/Simulink. Modelling in a system for analysis of coupled mechanical systems (Creo, MSC.Adams). Using CAD systems to create geometric model. Model parameterization, sensitivity analysis and optimization, creation of rigid and flexible bodies and constrains. Modelling of selected processes regarding specialization (a floating needle system, a clearance in kinematic joints, a yarn ballooning etc.).				
Prerequisites: not specified	1			

Modelling and Simulation Dept.: KTS Course code: MOD Minimum 2 students	Ing. Petr Zabka, Ph.D. Ing. Martin Konecny, Ph.D.	WS / 4 ECTS	Bachelor level		
Annotation					
model creation: model simp Method in linear problems deformation variant. Effect software products.	An introductory course to computer modelling of technical problems using FEM. Fundamentals of computer model creation: model simplification, element types, mesh generation, boundary conditions. Finite Element Method in linear problems of mechanics. Mathematical fundamentals of variational formulation of FEM - deformation variant. Effective data handling. Modelling errors. Practical problem-solving using FEM				
Prerequisites: Elasticity and	Prerequisites: Elasticity and strength I.				

Project II. / PR2*M	Ing. Simon Kovar, Ph.D.	WS / 4 ECTS	Master level		
Annotation					
The aim of the project is to acknowledge design skills by solving specific design tasks in the field of single- purpose and textile machines and machines for production of nanofibers. The design is supported by analyses, syntheses and experiments.					
Prerequisites: Machine Parts and Mechanisms.					

Mechanism Design Dept.: KTS Course code: SM Minimum 2 students	prof. Ing. Jaroslav Beran, CSc.; doc. Ing. Martin Bilek, Ph.D. Ing. Simon Kovar, Ph.D.	WS / 5 ECTS	Master level	
	Annotation			
Methods of complex design of mechanisms and machine subsystems, structural, type and geometrical optimizations of mechanisms. Planar and spatial kinematic chains. Geometrical precision of the position of mechanism member, trajectory analysis, the transmission angle. Graphical, analytical and computer methods of mechanism synthesis. Synthesis of cam and special mechanism, Design of cam function motion, cam design. Mechanisms modelling in MSC.ADAMS software.				

			• 1
Minimum 2 students	doc. Ing. Jan Valtera,		
	Ph.D.		
Annotation			
	cture and basic mechanical		
the construction practice. Technology of yarn production, material preparation for weaving and knitting,			
weaving technology, knitti			
spinning, weaving and kn			
mechanically joined, bond	ed and laminated. Nanofi	ber Production Methods	(electrospinning, force
spinning, drawing, meltblow	n). Principles of production	of various types of nanofib	orous structures.
Prerequisites: not specified	k		

Experimental Methods in Metal Forming Dept.: KSP	Ing. Jiri Sobotka, Ph.D.	WS / 5 ECTS	Master level	
Course code: EMMF				
Annotation				
The aim of the course is to a				
technological processes. St				
technical quantities involve				
	course and methodology of evaluation the basic destructive and non-destructive tests used in meta			
forming for evaluation material and technological properties of processing metals will be explained Moreover, the importance of standardized and technological forming tests for technical practice will be				
explained as well. For typica				
strength materials, AI alloys, corrosion-resistant materials, etc.) will be performed the focused experimental tests necessary for the definition of basic and advanced numerical deformation models used				
in the branch of metal forming. The education of course also familiarizes student's knowledge in low-cycle				
and high-cycle fatigue testing of different types of materials and formed products. On the basis of				
performed experiments, ma				
and examples of their furthe			·	
Prerequisites: Knowledge of	of the metal forming technol	ogies and material science		

SUMMER SEMESTER (SS = February - June)

Surface Treatments Dept: KMT Course code: PÚ*M	Ing. Totka Bakalova, Ph.D.	SS / 5 ECTS	Master level	
Annotation				
The course aims to acquaint students with methods and procedures used in surface modification of materials. Emphasis will be put on the methodology of preparation of surface treatments, the actual formation of coatings and the determination of parameters of coating technologies. The lectures will introduce the basic types of surface modifications, their application in engineering and fundamental financial and environmental aspects. The individual exercises will present the theoretical and practical aspects of the possibility of surface treatment of technical materials.				
Prerequisites: basic knowle	edge of surface modificatior	n of materials		

Programming and				
Servicing of CNC				
Machines			Deebelerievel	
Dept.: KSA	Ing. Petr Keller, Ph.D.	SS / 5 ECTS	Bachelor level	
Course code: CNC*M			Master level	
Minimum 5 students				
Maximum 10 students				
Annotation				
Basic characteristics of different types of CNC machines and control systems. Individual functions and				
commands of ISO programr	ning code. Creation of NC p	programs by CAD/CAM syst	ems with focus on	
multi-axis machining.				
Editing and setting of programs on machines and part production. Introduction to control systems,				
servicing and maintenances of CNC machines.				
Prerequisites: none				

Production Machines II Dept.: KSA Course code: VS2*M	Ing. Petr Zeleny, Ph.D.	SS / 6 ECTS	Master level	
Annotation				
Description of forming mac	Description of forming machines: characteristics precision, stiffness, forces, power transmission. Design			
for rigidity and performance. Design principles and feasibility of various parts. A mechanical press,				
mechanisms, devices, clutches, brakes, frames. Manipulation, control, security and safety. Devices,				
automation. Design of hydraulic presses. Machine hammers. Assembly machines. Design of clutches,				
brakes, frames. Safety.				
Prerequisites: Machine parts, Elasticity and Stresses				

Machine Drives and Servomechanisms Dept.: KSA Course code: PSS*M Minimum 5 students Maximum 10 students	doc. Ing. Radomir Mendricky, Ph.D. Ing. Petr Keller, Ph.D.	SS / 4 ECTS	Master level	
Annotation				
The subject introduces the basics of automation and control of production machines. The main attention is given to positional servomechanisms (principles of execution, interpolation errors, static and dynamic characteristics) and peripheries that enable and influence CNC machine control (measuring elements, control systems, design principles). The design of control loops and verification of principles of position control is also based on computer simulations in SW Matlab - Simulink.				
Prerequisites: n/a				

Informatic Systems of Production Planning Dept.: KSA Course code: ISRPP Minimum 5 students Maximum 12 students	Ing. Frantisek Koblasa, Ph.D.	SS / 4 ECTS	Master level	
Annotation The course will explain the methods of production management, especially using business management information systems as EPD, APS, MES. The topics of creating structural POMs, both toppical and				
information systems as ERP, APS, MES. The topics of creating structural BOMs, both technical and business management will be discussed in detail - documentation, Master production schedule, Material Requirements Planning, Manufacturing Resource Planning, Capacity plan, division and overlapping of orders, production scheduling, management and order tracking (information and material flow).				

Prerequisites: N/A

Programmable Logic Systems Dept.: KSA Course code: PLS*M	Ing. Radek Votrubec, Ph.D.	SS / 5 ECTS	Master level	
Annotation				
			1	
Automatons, principle and their graphs. Automaton implementation on Arduino Board.				
Design and implementation of control systems based on PLC controllers. Methods of PLC programming,				
contact diagrams, flowcharts, programming in their native language. Practical applications to real training				
systems. Ways to connect peripheral devices to PLC, such as sensors, electrical and pneumatic				
components.				
Prerequisites: none				

Artificial Intelligence Dept.: KSA Course code: UI*M	Ing. Miroslav Vavrousek, Ph.D.	WS, SS / 5 ECTS	Master level
Annotation			
Introduction into artificial intelligence, the central problems of artificial intelligence. Traditional computational models, state space, fitness function. Recognition and synthesis of audio and video, signal processing, image segmentation. Biologically inspired algorithms, neural networks, genetic algorithms, cellular automaton and other applications of artificial neural networks.			
Prerequisites: none			

Production Logistics Dept.: KSA Course code: VLOG Minimum 5 students Maximum 15 students incl. PI*M (all students in the subject)	lng. Frantisek Koblasa, Ph.D.	SS / 4 ECTS	Bachelor level Master level	
Annotation				
The goal of this course is to understand and be able to use the most used tools of industrial engineering methods in Production logistics. It includes Analytical tools (Pareto, Ishikawa, Spagetty material flow design principles, Sankey, R / L), Warehouse management (ABC), Explains the use of various methods used in business logistics (eg Kanban, ConWIP, Milk-run, Heijunka), Concurrent engineering. Automatic identification systems, visualization. The course will present selected CIM and present practical knowledge from a number of industrial projects. Part of the course are presentations of practitioners.				
Prerequisites: Student can	Prerequisites: Student can choose VLOG or PI*M (Industrial Engineering), not both.			

Industrial Engineering Dept.: KSA Course code: PI*M Minimum 5 students Maximum 12 Including VLOG (all students in the subject)	lng. Frantisek Koblasa, Ph.D.	SS / 6 ECTS	Master level
Annotation			
The course is focusing on the theory and problems of selected industrial engineering methods related to the innovation cycle. Emphasis is put on the methods usable in the product and production design phase			

(eg labour workload measurement, ergonomics), the consequences of the chosen design solution of the innovated product for business processes (eg Lean Design, Value Stream Mapping, logistics, process indicators) and technical solutions of machines and workplaces promoting high productivity and quality in the production of innovative products (eg rapid tool changes, Poka-yoke, Karakuri, maintenance). The seminars are focused on the practical application of selected methods of industrial engineering within an innovative team project focused on the design of technical elements for the production workplace. **Prerequisites: Student can choose VLOG (Production Logistics) or PI*M (Industrial Engineering), not both.**

Experimental Methods Dept.: KEZ Course code: TM Minimum 3 students	Ing. Jan Novosad, Ph.D.	SS / 4 ECTS	Bachelor level		
Annotation					
Pressure measurement. Temperature measurement. Humidity of Gasses measurement. Velocity and Flow					
measurement of Fluids. Torque and mechanical Revolution measurement.					
Prerequisites: Physics, Physical laboratory					

Thermodynamics and Heat Transfer Dept.: KEZ Course code: TST Minimum 3 students Under discussion!	lng. Magda Vestfálová, Ph.D	SS / 5 ECTS	Bachelor level	
Annotation			·	
Thermodynamic laws, thermodynamics of ideal gas, solving simple processes and cycles. Thermodynamics of real gases and vapours. Mixtures of ideal gases. Humid air. Selected irreversible processes. Fundamentals of heat (conduction, convection and radiation).				
Prerequisites: Mathematics, Physics				

Design of Thermal Machines Dept.: KEZ Course code: TSK Minimum 3 students	doc. Ing. Milos Müller, Ph.D.	SS / 6 ECTS	Master level required!		
Annotation					
This subject presents the basic information about power engineering and power machines. The designer approach to selected power machines is used. That means not only the good understanding of the machine theory and characteristics, but the calculation of basic dimensions, the choice of appropriate materials and					
so on.					
Prerequisites: Thermodynamics/TST!!!, Fluid Mechanics					

Internship Dept.: KEZ Course code: EX*M Minimum 3 students	Ing. Jan Novosad, Ph.D.	SS / 3 ECTS	Master level		
Annotation					
One week technical excursion about power and thermal equipment.					
Prerequisites: none					

Project I Dept.: KEZ Course code: PR1*M To be agreed with the teacher before registration of this course Under discussion!	Ing. Jan Kracík, Ph.D	SS / 3 ECTS	Master level
Annotation			
The subject of Project I. for industrial demands. Individu Prerequisites: N/A			-

Mechanics III (Dynamics) Dept.: KMP Course code: DYN	doc. Ing. David Cirkl, Ph.D.	SS / 5 ECTS	Bachelor level		
Annotation	Annotation				
Dynamics of particle, systems of particles. Dynamics of translation, rotation, general plane motion and general spatial motion of a rigid body. Dynamic of simultaneous, multibody dynamics. Linear vibration of system with one degree of freedom. Body with changing mass. Basics of impact theory. Lagranges equation of 2'nd kind.					
Prerequisites: Basic knowledge of the subjects DYN, STA and FYI.					

Elasticity and Strength 1 Dept.: KMP Course code: PP1	doc. Ing. Tran Huu Nam, Ph.D.	SS / 5 ECTS	Bachelor level		
Annotation					
Fatigue as a phenomenon in the material. Parameters influencing fatigue behaviour of machine parts.					
Stress concentration at notches under static loading. Contact mechanics. Stress concentration at notches					
under dynamical loading. Load spectra under variable - amplitude loading. Determination of safe factor for					
different types of loading. Safe life fatigue. Life cycle of machine parts. Basic of crack mechanics.					
Prerequisites: Basic knowledge of the subjects STA and M1B					
Flerequisites. Basic known	euge of the subjects STA a				

Fatigue of Structures and Materials Dept.: KMP Course code: DPZ	prof. Ing. Iva Petrikova, Ph.D.	SS / 5 ECTS	Master level		
Annotation					
Fatigue as a phenomenon in the material. Parameters influencing fatigue behaviour of machine parts.					
Stress concentration at notches under static loading. Contact mechanics. Stress concentration at notches					
under dynamical loading. Load spectra under variable - amplitude loading. Determination of safe factor for					
different types of loading. Safe life fatigue. Life cycle of machine parts. Basic of crack mechanics.					
Prerequisites: Basic knowledge of the subjects PP1, PP2 and NMI.					

Design of Technological			
Processes	doc. Ing. Stepanka	SS / 4 ECTS	Master level
Dept.: KOM	Dvorackova, Ph.D.,		

			* 1
Course code: PTPA			
Minimum 2 students			
Annotation			·
During the interdisciplinary	subject students will famili	arize with basic principles a	and tools of production
control during casting, welc			
point is the theoretical found	5	0,	· · · · ·
analysis, calculations takir	ng into account the capa	city requirements of safe	ty, hygiene and ergo
perspectives.			
Prerequisites: Connection to	o subjects of the field.		

Assembly and Metrology Dept.: KOM Course code: MOM-B Minimum 2 students	doc. Ing. Stepanka Dvorackova, Ph.D., Ing. Artur Knap	SS / 4 ECTS	Bachelor level	
Annotation				
Learning outcomes of the course unit The aim of the course is to get acquainted with the problems of engineering metrology and assembly technologies.				
Prerequisites: none	· ×			

Robot Vision Dept.: KSR Course code: ROV Minimum 2 students	doc. Ing. Vlastimil Hotar, Ph.D.	SS / 4 ECTS	Master level
Annotation			
The subject gives an overview of principles and possibilities of technology scene visualisation (machine vision) and its application on production lines and robotized workplaces (robot vision). It deals with the basic means of obtaining image data, physical principles of image acquisition, post-processing, analysis, interpretation and evaluation of image data. Overview of chips types, industrial cameras and lighting, lenses, data transfer types, and interface.			
Prerequisites: none			

Technology of Automatic Glass Production Dept.: KSR Course code: TVS Minimum 2 students	doc. Ing. Vlastimil Hotar, Ph.D.	SS / 4 ECTS	Master level	
Annotation				
Annotation The subject presents characteristics of glass materials, defines a difference between glass and glass melt and analyses their properties. The theory of glass melting, glass melting furnace, and theory of forming and annealing is given. Basic technological processes of automated glass production and processing are shown, including an overview of principles. Importance of treatment and processing of glass with new usable properties. The aim is to acquaint students with the basics of modern and automatic glass technology with an emphasis on used equipment and machines.				
Prerequisites: none				

Technical Diagnostics
Dept.: KVM
Course code: TDdoc. Dr. Ing. Elias
TomehSS / 4 ECTSBachelor level
Master level

Annotation

The course focuses on the diagnosis of non-assembled machines. Diagnosis is mainly based on the measurement and vibration analysis of machines and equipment. Students will learn the vibration spectra, vibration cepstrum, vibration severity, determine the causes of excessive vibration, excitation frequencies, machines taking over, operating deflection shapes of oscillations, experimental modal analysis and termodiagnosis without disassembly. The subject contains the basics of noise measurement, noise reduction and detection of acoustic material properties such as acoustic absorption and transmission attenuation.

Prerequisites: Mechanics III (Dynamics), Machine Parts and Mechanisms, Mechanical vibrations.

Machine Parts and Mechanisms I Dept.: KST Course code: CSI	prof. Ing. Lubomir Pesik, CSc. Ing. Radka Jirova, Ph.D.	SS / 5 ECTS	Bachelor level
Annotation			
Basic design principles, static and dynamic loads, fatigue and durability of machine parts. Threaded joints, screws, and bolts. Keys, splines and spline bushings, pressed and welded joints. Ball and roller, radial and axial bearings, slide bearings and their housing. Gear trains, spur, helical, bevel gears. Belt drives with flat, V-type and synchronous belts. Chain drives.			
Prerequisites : Technical Mechanics, Elasticity and Strength (Entrance test) and Technical Drawing. Passing an entrance test on the basics of mechanics (statics, kinematics, dynamics) and elasticity and strength (critical section of the part, stress types, limit stresses and limit deformations).			

Experimental Methods Dept.: KST Course code: EXM	Ing. Ales Lufinka, Ph.D. Ing. Martin Mazac, Ph.D.	SS / 4 ECTS	Master level	
Annotation				
The course is focused on knowledge improvement in the area of industrial products testing and experimental work: safety, correlation, overall parameters and experiment setup, remarks on main elements. Most common sensors: physical principle, design, their advantages and disadvantages, calibration rules. Amplifiers for measurement, theoretical function principles, selection and connection with respect to the sensor design.				
Prerequisites: Students should acquire and deepen their knowledge in the field testing of machinery and experimental activities: security, bond, option tot parameters and setting the overall configuration of the experiment, broken down into individual segments and their significance. The most commonly used sensors: types, physical principles, design, their advantages and disadvantages, the principle of calibration, measuring amplifier. They should acquire knowledge of the theoretical foundations of features and integration with respect to the sensor design.				

Project Management Dept.: KST Course code: RIP	doc. Ing. Petr Lepsik, Ph.D. Ing. Vladimír Sojka, Ph.D.	SS / 4 ECTS	Master level
Annotation			
The courses are focused on bases principles and methods of project management. The students will applicate the theory of project management in solving of bases examples, which will be separate to simple steps of management of planning, preparation and realization. The subject will include a special program for project management.			
Prerequisites: none			

Design Methodology Dept.: KTS Course code: MKO Minimum 2 students	Ing. Simon Kovar, Ph.D.	SS / 4 ECTS	Master level
Annotation			
Annotation General principles and laws of the design process in the designing of technical objects and technological units. Methods of technical creative work. Life cycle of a technical object. Methodical approach to machine design, evaluation of variants and selection of the most suitable solution, principles of designing mass- produced and single-purpose machines. Methods to increase creative potential, brainstorming, value analysis, heuristic procedures, teamwork. Principles and methodology of manufacturability. Quality, safety and health and nature protection. Unification and normalization. Principles of creating 2D and 3D documentation. Industrial and legal protection.			
Prerequisites: Machine Parts and Mechanisms II. Design Exercise			

Project I.				
Dept.: KTS	Ing. Simon Kovar, Ph.D.	SS / 3 ECTS	Master level	
Course code: PR1*M				
Annotation				
The aim of the project is to acknowledge design skills by solving specific design tasks in the field of single- purpose and textile machines and machines for production of nanofibres. The design is supported by analyses, syntheses and experiments.				
Prerequisites: Machine Parts and Mechanisms.				

Pro Dep	ulation of Polymer cessing t.: KSP Irse code: SPP	Ing. Pavel Brdlik, Ph.D.	SS / 5 ECTS	Master level	
Ann	otation	•	·		
The	aim of course is getting	knowledge in field of comp	uter simulation of polymer p	processing. The content	
of c	ourse is:				
1.		numerical computation meth			
2.		ection molding process with	ith software CADMOULD.	The fundamentals and	
3.	possibilities of used so		f aimulation asftware CADA		
3. 4.		ts and export possibilities o jection molding process ma			
4. 5.		nalysis of injection molding			
5. 6.		sis of injection molding pro			
7.		cial injection molding technology			
8.				CABINOCED.	
9.					
0.	possibilities of used software.				
10.					
11.					
12.					
13.					
	processes.				
	14. The simulation of thermoforming process with software T-SIM.				
Prer	Prerequisites: Knowledge of the plastic processing technologies.				
<u> </u>	Notes:				

 Bachelor/Diploma Thesis will be solved individually, please contact Mrs. Marcela Valkova – <u>marcela.valkova@tul.cz</u>.

- When choosing the course please pay attention to the conditional courses, i.e. the courses that should be passed before attending the new one. Many of our courses offered to Erasmus+ incoming students are for the students of higher grade!
- The course description of all above mentioned courses including information about the conditional course and the form of course completion can be found at the following web page after putting the course abbreviation: https://stag.tul.cz/portal/studium/prohlizeni.html?pc_pagenavigationalstate=AAAAAqAGMjlzMTc3E

https://stag.tul.cz/portal/studium/prohilzeni.html?pc_pagenavigationalstate=AAAAAgAGMjIZM1c3E wEAAAABAApzdGF0ZUNsYXNzAAAAAQA2Y3ouemN1LnN0YWcucG9ydGxldHMxNjgucHJvaGxpem VuaS5zdGF0ZXMuUHJIZG1ldFN0YXRIAAYyMzAwMTQTAQAAAAEACnN0YXRlQ2xhc3MAAAABADZj ei56Y3Uuc3RhZy5wb3J0bGV0czE2OC5wcm9obGl6ZW5pLnN0YXRlcy5QcmVkbWV0U3RhdGUAA AAA&pc_lang=en

• List of Departments at FME:

KMT = Department of Material Science

- KSA = Department of Manufacturing Systems and Automation
- KEZ = Department of Power Engineering Equipment

KMP = Department of Applied Mechanics

- KOM = Department of Machining and Assembly
- KSR = Department of Glass Producing Machines and Robotics
- KVM = Department of Vehicles and Engines
- KST = Department of Design of Machine Parts and Mechanisms
- KTS = Department of Textile Machine Design
- KSP = Department of Engineering Technology